
Digital Approaches to Historical Inquiries

4th Class

Gifts to federal employees from foreign sources

• Title of Nobility Clause (U.S. Constitution,
Article 1, Statute 9):

“[N]o Person holding any Office of Profit or Trust
under them, shall, without the Consent of the
Congress, accept of any present, Emolument, Office,
or Title, of any kind whatever, from any King, Prince,
or foreign State.”

• Foreign Gifts and Decorations Act (1966; 5
USC 7342)

• Reporting system for gifts over certain
minimum threshold.
• Reported by the Office of Protocol (Department of

State) in the Federal Register

Trump and Michael T. Flynn

Cartoon by Cameron Cottril

https://twitter.com/Camcottrill/status/808785808949813248

What makes Historical Data(sets) special?

• Proxy

• Dissimilar sources

• Fragmented

• Sparse

• Interdependent (with time)

• Multi-scalar/geo-locations unknown

Fragment of P52

(earliest record of New Testament;

wikimedia)

Magritte (1928/1929)

A Möbius strip (wikimedia)

https://commons.wikimedia.org/wiki/File:P52_recto.jpg
https://commons.wikimedia.org/wiki/File:M%C3%B6bius_strip.jpg

Proxies, Phenomena and Abstractions

Past

Phenomenon Concept Dataabstraction representation

Gift Diplomacy

Gift

Diplomacy

political

entities

interact;

goods are

transacted

Gifts to

Federal

Employees

Register

abstraction representation

Heuristic Process

Dissimilar Sources

Gift

Diplomacy

political

entities

interact;

goods are

transacted

Dissimilar

Sources
abstraction representation

Fragmented

1966 1978 1996-1998 2016 ????

?

Sparse

1966 1978 1996-1998 2016 ????

?

???????????

1978 2010 2016 ????

Interdependent
• Temporal:

• Phenomenon takes place in time

• Datestamp?

• What system?

• Contextual?

• Phenomenon takes place over time

• How to trace the phenomenon longitudinally?

• Snapshots?

• Dynamic?

• Multi-levelled?

• Geographically

• Linguistically

• Other phenomena
• Diplomatic Gift Giving and Economy or Identity or Popularity or…

Markup languages

• Describe data, but “don’t do anything” (not a programming language)

• Many different types:
• HTML

• Tex

• Wiki-markup

• XML
• eXtensible: can be extended (not a single pre-defined markup language)

• Markup: from marking up a document, with <tags>…</tags>

• Language: both human and machine readable, based in the Standard
Generalized Markup Language (ISO 8879:1986)

• Authored by the World Wide Web Consortium, learn all about XML
in their tutorial.

• XML is a widely used format for data interchange
• Comparable to JSON, but not the same

https://www.w3schools.com/xml/default.asp
https://www.w3schools.com/js/js_json_xml.asp

XML
example adapted from Python’s ElementTree documentation

<?xml version="1.0" encoding="UTF-8"?> xml prolog

<data> tag

<data> … </data>: element

name: attribute

Liechtenstein: attribute value

1 text

<?xml version="1.0" encoding="UTF-8"?>
<data>

<country name="Liechtenstein">
<rank>1</rank>
<year>2008</year>
<gdppc>141100</gdppc>

</country>
<country name="Singapore">

<rank>4</rank>
<year>2011</year>
<gdppc>59900</gdppc>

</country>
<country name="Panama">

<rank>68</rank>
<year>2011</year>
<gdppc>13600</gdppc>

</country>
</data>

data

country country country

rank

year

gdppc

https://docs.python.org/3/library/xml.etree.elementtree.html

Step -1: learn the basics of Python

• This how-to pre-supposes you understand the
basics of Python, such as:

• What variables are

• What variable types are (e.g. integer, string)

• What functions are

• How to make for-loops

• What an if-statement is

• What a dictionary is in Python

• If you don’t, you can still do this how-to, but you
may not understand (some of) the code and why
we use it.

• There are a LOT of Python tutorials out there

• Learn Python!

• Learn Python 3!

• I learned Python from Dr. Chuck.

• www.py4e.com

http://www.dr-chuck.com/
http://www.py4e.com/

Step 0: download the how-to folder,
extract it to your workfolder,
and access your files folder with Anaconda.

p: #navigate to your p: drive
cd #access folder
dir # see contents of folder
cd .. # go up one folder
cls # clear console screen
python helloworld.py # run a python program in Anaconda

• Tip: anything following # in Python is a “comment”, it will be ignored by the
computer when reading through your program.

• Test it yourself:
• Run helloworld.py

• You can find the files for this tutorial at www.shoresoftime.com/dighist in the
schedule for the 4th class.

• Unzip them to a folder of your choice in your P: drive (tip: keep the path
short)

• Open Anaconda console and navigate to the location

http://www.shoresoftime.com/dighist

Step 1: access the xml-tree
on the web

import urllib.request

url = 'http://www.shoresoftime.com/ObamaGifts.xml'
response = urllib.request.urlopen(url)

• All these steps can be found in the how-to folder, e.g. step1.py

• Try it yourself:
• Open the .py file for editing

• Write a function that will allow you to print the contents of response to the Anaconda
console to see what you downloaded
• hint: the python command to print to console is print()

• Run the program

• NB Python or Anaconda does not have a built in virus scanner, so make sure,
before you download anything, you can trust its source.

Step 2: save the xml-tree

import urllib.request

url = 'http://www.shoresoftime.com/ObamaGifts.xml'
response = urllib.request.urlopen(url)
contents = response.read()
file = open("ObamaGifts.xml", 'wb’)
file.write(contents)
file.close()

• Run the program

• NB this is a very long route to take to save a xml file, we could also have
navigated to the page and simply saved it via the browser. Still, it is good to
have a bit of practice for when you will need to automate webpage accessing
and downloading.

Step 3: Open the tree

import xml.etree.ElementTree as etree
with open('ObamaGifts.xml', 'rb') as xml_file:

tree = etree.parse(xml_file)
root = tree.getroot()

<DATA>

<GIFTS year=“2014” > <GIFTS year=“2015”>
<GIFTS

year=“2016”>

<GIFT> <GIFT> <GIFT>

<NAME>

<DESCRIP>

<DONOR>

<REASON>

root

tree

child

subchild

siblings

attribute tag

Step 4: Look inside the tree

• Run program

• Try it yourself:
• Print the attribute of the GIFTS child

• Hint: the abbreviation used here is attrib

import xml.etree.ElementTree as etree
with open('ObamaGifts.xml', 'rb') as xml_file:

tree = etree.parse(xml_file)

root = tree.getroot()

for child in root:
print (child.tag)

Step 5: Look at the whole tree

import xml.etree.ElementTree as etree
with open('ObamaGifts.xml', 'rb') as xml_file:

tree = etree.parse(xml_file)

root = tree.getroot()

for element in tree.iter():
print (element.tag)

• Run program

• Try it yourself:
• Print the tag and the text of the elements

• Hint: you can separate variables (or strings) to print with a ,

e.g. print (x, y)

Step 6: Cut the tree in pieces
(it won’t hurt)

import xml.etree.ElementTree as etree
with open('ObamaGifts.xml', 'rb') as xml_file:

tree = etree.parse(xml_file)

root = tree.getroot()

for child in root:
print (child.tag)
for attribute, value in child.attrib.items():

if value != "2016": continue
for subchild in child.iter():

print (subchild.tag, subchild.text)

• Run program

• Try it yourself:
• Change the != operator to ==, what happens?

Step 7:
How many gifts are under the tree?

import xml.etree.ElementTree as etree
with open('ObamaGifts.xml', 'rb') as xml_file:

tree = etree.parse(xml_file)

root = tree.getroot()
giftevent = 0
gifts =root.findall(".//GIFT”)

for gift in gifts:
if "Barack Obama" in gift[0].text: giftevent = giftevent + 1 giftevent =

str(giftevent)
print ("Barack Obama had " + giftevent + " foreign gift parties during his presidency.")

• Run program

• Try it yourself:
• How many gift events did Hillary have during the same time?

• Tip: she is the only Hillary in this database

Assignment III

• Remember: these federal employees are not even supposed to accept
gifts from foreign sources!

• End goal of this assignment is to have an exhaustive list of all the
reasons these people have for still accepting gifts.

• Aim is to be able to extract information from an XML file as well as
find solution to a programming question online.

• Spend 2 hours on this

• By next Tuesday, hand in, via a direct message to me in Slack:
• your solution/the current output of your script (even if it is an error)

• your script (even if it does not function)

• a short overview of how you got to where you did (resources used,
alternative solutions tried, etc.)

See you next week!

